1.已知方程x^2-(bcosA)x+acosB=0的两根之和等于两根之积,且a,b为△ABC的两边,AB为边a,b的对
2个回答

1.

由根与系数关系,两根之和=bcosA,两根之积=acosB,二者相等:bcos=acosB

==> a/b=cosB/cosA,而由正弦定理:a/sinA=b/sinB ==> a/b=sinA/sinB

因此:sinA/sinB=cosB/cosA ==> sinAcosA=sinBcosB ==>sin2A=sin2B ==> sin2A-sin2B=0,sin2A-sin2B=2[cos(2A+2B)/2]sin[(2A-2B)/2]=2cos(A+B)sin(A-B) ==> cos(A+B)sin(A-B)=0 ==> cos(A+B)=0或sin(A-B)=0 ==> A+B=π/2,或A-B=0即A=B ==> △ABC是直角或等腰三角形.

2.

你的a^2+b^2/c^2=sin^2A+sin^2B/sin^2C应该是指:(a^2+b^2)/c^2=[(sinA)^2+(sinB)^2]/(sinC)^2吧,是的话证明如下:

正弦定理:a/sinA=b/sinB=c/sinC,设它们都等于K:a/sinA=b/sinB=c/sinC=K,则:a=KsinA,b=KsinB,c=KsinC

(a^2+b^2)/c^2

=[K^2(sinA)^2+K^2(sinB)^2]/K^2(sinC)^2

=K^2[(sinA)^2+(sinB)^2]/K^2(sinC)^2

=[(sinA)^2+(sinB)^2]/(sinC)^2

3.

因为a^4+b^4+c^4=2c^2(a^2+b^2),所以:

[c^2-(a^2+b^2)]^2

=c^4-2c^2(a^2+b^2)+(a^2+b^2)^2

=c^4-(a^4+b^4+c^4)+a^4+2a^2b^2+b^4

=(a^4+b^4+c^4)-(a^4+b^4+c^4)+2a^2b^2

=2a^2b^2

=(√2ab)^2

两边开方得:

c^2-(a^2+b^2)=±√2ab ==> c^2=a^2+b^2±√2ab

因此:c=√(a^2+b^2±√2ab)=√(a^2±√2ab+b^2)

也可表示为:c=√(a^2+√2ab+b^2),或c=√(a^2-√2ab+b^2)

(√2表示根号二,√()表示对括号里的代数式开根号)

4.

余弦定理:

b^2+c^2-2bccosA=a^2 ………………………………(1)

c^2+a^2-2cacosB=b^2 ………………………………(2)

a^2+b^2-2abcosC=c^2 ………………………………(3)

(1)+(2)+(3)得:

b^2+c^2-2bccosA+c^2+a^2-2cacosB+a^2+b^2-2abcosC=a^2+b^2+c^2

移项化简:

b^2+c^2+c^2+a^2+a^2+b^2-(a^2+b^2+c^2)=2bccosA+2cacosB+2abcosC

2(b^2+c^2+a^2)-(a^2+b^2+c^2)=2(bccosA+cacosB+abcosC)

即:a^2+b^2+c^2=2(bccosA+cacosB+abcosC)