解题思路:(1)作CM⊥x轴于M,求出CM=CN=2,证△BAO≌△ACM,推出AO=CM=2,OB=AM=4,即可得出答案;
(2)求出AO=CN=2,根据相似求出AD=DC,根据三角形面积公式求出即可;
(3)在BD上截取BF=AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案.
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中
∠BAO=∠ACM
∠AOB=∠CMA
AB=AC
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:如图1,作CN⊥y轴于N,
∵AO=2,
∴A(-2,0),
∴OA=CN,
∴BD=BD,
∴根据等底(BD=BD)等高的三角形面积相等得出:S△ABD=S△CBD.
(3)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中
AB=AC
∠ABF=∠CAE
BF=AE
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中
AD=DC
∠FAD=∠ECD
AF=CE
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE.
点评:
本题考点: 全等三角形的判定与性质;坐标与图形性质.
考点点评: 本题考查了全等三角形的性质和判定,相似三角形的性质和判定,三角形面积,坐标与图形性质的应用,主要考查学生的推理能力.