ƒ(x) = - 2/(x - 1)
ƒ'(x) = - 2 • - 1/(x - 1) = 2/(x - 1)
对于x > 1,ƒ'(x) > 0
所以ƒ(2)&ƒ(3) > 0
∴ƒ(x)在[2,3]上是增函数
ƒ(2) = - 2/(2 - 1) = - 2
ƒ(3) = - 2/(3 - 1) = - 1
所以在[2,3]上ƒ(x)的最小值是- 2,最大值是- 1
如果没学导数的话,可设3 ≥ x2 > x1 ≥ 2
则ƒ(x2) - ƒ(x1)
= - 2/(x2 - 1) - (- 2)/(x1 - 1)
= 2/(x1 - 1) - 2/(x2 - 1)
= 2[(x2 - 1) - (x1 - 1)]/[(x1 - 1)(x2 - 1)]
= 2(x2 - x1)/[(x1 - 1)(x2 - 1)]
其中分母(x1 - 1)(x2 - 1) > 0
分子x2 - x1 > 0
即ƒ(x2) - ƒ(x1) > 0,于是ƒ(x)在[2,3]上是增函数