已知在△ABC中,AB=AC ∠BAC=α,60°
3个回答

在△ABC内取点D,使得PD//BC且BP=CD,连结AD

则易知四边形BCDP是等腰梯形

有∠PBC=∠DCB

因为AB=AC,所以∠ABC=∠ACB

则∠ABP=∠ACD

所以△ABP≌△ACD (SAS)

则AP=AD且∠BAP=∠CAD

在△ACP中,PC=AC,∠PCA=120°-a

则∠APC=∠PAC=(180°-∠PCA)/2=[180°-(120°-a)]/2=30°+a/2

又∠BAC=a,则∠BAP=∠BAC-∠PAC=a-(30°+a/2)=a-30°

所以∠PAD=∠BAC-∠BAP-∠CAD=a-2(a-30°)=60°

因为AP=AD,所以△PAD是等边三角形

则PD=AD

所以△PCD≌△ACD (SSS)

则∠PCD=∠ACD=∠PCA/2=60°-a/2

又∠BCA=∠CBA=(180°-∠BAC)/2=90°-a/2

则∠BCD=∠BCA-∠ACD=90°-a/2 -(60°-a/2)=30°

所以∠PBC=∠BCD=30°