如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,AD:BC=3:5,动点P从A出发以2厘米/
1个回答

解题思路:(1)作CE⊥AB于E,根据勾股定理即可求解;

(2)要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即可得到关于t的方程,进行求解;

(3)此题要分两种情况考虑:点Q在BC上,即0≤t≤3[1/3]时,APQD面积等于直角梯形ABCD面积减去△PQB面积;当点Q在CD上,即3[1/3]<t≤4[2/3],即直角梯形APQD面积.

(1)如图1,作CE⊥AB于E,则四边形ADCE是矩形.

则CE=AD=6,

∵CE:BC=3:5,

∴BC=10厘米,

BE=

BC2−CE2=

102−62=8厘米,

∴AB=AE+BE=4+8=12厘米;

(2)如图2,要使PC与BQ相互平分,只需保证四边形CPBQ是平行四边形,即PB=CQ

由(1),得AB=12,则PB=12-2t.

则12-2t=3t-10,

t=4.4.

(3)

当0≤t≤3[1/3]时,则BP=12-2t,QF=[3/5]×3t=[9/5]t,

y=[1/2]×(4+12)×6-[1/2]×[9/5]t(12-2t)=-[9/5]t2+[54/5]t+48

当3[1/3]<t≤4[2/3]时,则y=[1/2]×6×(3t-10+2t)=15t-30.

点评:

本题考点: 四边形综合题.

考点点评: 此题考查了梯形的性质、平行四边形的判定、解直角三角形的知识、三角形的面积公式.能够借助函数的知识讨论图形的面积最值问题.