设等比数列{an}的前n项和为Sn,已知a2=6,6a1+a3=30,求an和Sn.
1个回答

解题思路:设出等比数列的公比为q,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n项和的公式即可.

设{an}的公比为q,由题意得:

a1q=6

6a1+a1q2=30 ,

解得:

a1=3

q=2或

a1=2

q=3,

当a1=3,q=2时:an=3×2n-1,Sn=3×(2n-1);

当a1=2,q=3时:an=2×3n-1,Sn=3n-1.

点评:

本题考点: 等比数列的前n项和;等比数列的通项公式.

考点点评: 此题考查学生灵活运用等比数列的通项公式及前n项和的公式化简求值,是一道基础题.