∵DE是BC的垂直平分线
∴BE=EC,∠DEC=∠BED
在△BDE和△CED中
{BE=EC,∠DEC=∠BED,ED=ED
∴△BDE≡△CED(SAS)
∴∠DBC=∠C
∵∠ABD=∠C+6°
∴∠DBC=180°-∠A-∠C-∠BAD
=90°-∠DBC-∠C-6°
=90°-2∠DBC-6°
=28°
∠BDC=180°-∠BDA
=180°-(90°-∠C-60°)
=180°-(30°-∠C)
150°+∠DBC
∴∠BDC=178°
我想试试我会不会,可能不大对,你们老师要是讲了,就告诉我吧.希望能帮助你.还有,你的题目好像错了,还少一个:连接BD.