sina(a+b)-sina=2sinb/2*cos(a+b/2)
1个回答

证明:左边=sin(a+b)-sina

=sin[(a+b/2)+(b/2)]-sin[(a+b/2)-(b/2)]

=sin(a+b/2)*cos(b/2)+cos(a+b/2)*sin(b/2)-

[sin(a+b/2)*cos(b/2)-cos(a+b/2)*sin(b/2)]

=sin(a+b/2)*cos(b/2)+cos(a+b/2)*sin(b/2)-sin(a+b/2)*cos(b/2)+cos(a+b/2)*sin(b/2)

=2cos(a+b/2)*sin(b/2)

=2sin(b/2)*cos(a+b/2)=右边

因此,sin(a+b)-sina=2sin(b/2)*cos(a+b/2)