cos(α+β)+cos(α-β)=4/5,sin(α+β)+sin(α-β)=3/5 求(1) tanα,(2)2co
2个回答

(1) tanα

cos(α+β)+cos(α-β)=4/5,sin(α+β)+sin(α-β)=3/5

cos(α+β)+cos(α-β)

=cosαcosβ-sinαsinβ+cosαcosβ+sinαsinβ

=2cosαcosβ=4/5

cosαcosβ=2/5

sin(α+β)+sin(α-β)

=sinαcosβ+cosαsinβ+sinαcosβ-cosαsinβ

=2sinαcosβ=3/5

sinαcosβ=3/10

sinαcosβ/cosαcosβ=3/4

sinα/cosα=3/4

tanα=3/4

,(2)2cos²(α/2)

cosα=±3/√(3²+4²)=±4/5

2cos²(α/2)=1+cosα=1±4/5

(2)[2cos²(α/2)-3sinα-1]/{√2sin[α+(π/4)]}

[2cos²(α/2)-3sinα-1]/{√2sin[α+(π/4)]}

=(1+cosα-3sinα-1)/[√2sinαcos(π/4)+√2cosαsin(π/4)]

=(cosα-3sinα)/(sinα+cosα)

=(cosα-3sinα)(sinα-cosα)/[(sinα+cosα)(sinα-cosα)]

=(sinαcosα+3sin²α-cos²α+3sinαcosα)/(sin²α-cos²α)

=(3sin²α-cos²α+4sinαcosα)/(sin²α-cos²α)

=(2sin²α-1+1+sin²α-cos²α+4sinαcosα)/(sin²α-cos²α)

=(-cos2α+1-cos2α+2sin2α)/(-cos2α)

=(2cos2α-2sin2α-1)/cos2α

=2-2tan2α-1/cos2α

=2-2*2tan2α/(1-tan²α)-1/(2cos²α-1)

=2-2*2*(3/4)/(1-9/16)-1/(2*16/25-1)

=-8+3/7