解题思路:(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,可设抛物线的函数解析式为y=ax2,又由点A在抛物线上,即可求得此抛物线的函数解析式;
(2)延长AC,交建筑物造型所在抛物线于点D,连接BD交OC于点P,则点P即为所求;
(3)首先根据题意求得点B与D的坐标,设直线BD的函数解析式为y=kx+b,利用待定系数法即可求得直线BD的函数解析式,把x=0代入y=-x+4,即可求得点P的坐标.
(1)以点O为原点、射线OC为y轴的正半轴建立直角坐标系,
设抛物线的函数解析式为y=ax2,
由题意知点A的坐标为(4,8).
∵点A在抛物线上,
∴8=a×42,
解得a=[1/2],
∴所求抛物线的函数解析式为:y=[1/2]x2;
(2)找法:
延长AC,交建筑物造型所在抛物线于点D,
则点A、D关于OC对称.
连接BD交OC于点P,则点P即为所求.
(3)由题意知点B的横坐标为2,
∵点B在抛物线上,
∴点B的坐标为(2,2),
又∵点A的坐标为(4,8),
∴点D的坐标为(-4,8),
设直线BD的函数解析式为y=kx+b,
∴
2k+b=2
−4k+b=8,
解得:k=-1,b=4.
∴直线BD的函数解析式为y=-x+4,
把x=0代入y=-x+4,得点P的坐标为(0,4),
两根支柱用料最省时,点O、P之间的距离是4米.
点评:
本题考点: 二次函数的应用.
考点点评: 此题考查了二次函数的实际应用问题.解此题的关键是根据题意构建二次函数模型,然后根据二次函数解题.