导数与抛物线.已知A.B是抛物线y^2=4x上的两点,且满足OA⊥OB(O为坐标原点),求证:(1)A,B两点的横坐标,
1个回答

(1)设A(x1,y1),B(x2,y2)

==>向量OA=(x1,y1),向量OB=(x2,y2)

OA⊥OB

==>x1x2+y1y2=0

==>y1y2=-x1x2

(y1)^2=4x1,(y2)^2=4x2

==>(y1y2)^2=16x1x2=-16y1y2

==>y1y2=-16

==>x1x2=-y1y2=16

==>A,B两点的横坐标,纵坐标之积分别为定值;

(2)(y2)^2-(y1)^2=4x2-4x1

==>(y2-y1)/(x2-x1)=4/(y1+y2)

直线AB:y-y1=(y2-y1)/(x2-x1)[x-x1]

==>y=4/(y1+y2)(x-x1)+y1

=[4(x-x1)+((y1)^2+y1y2]/(y1+y2)

=[4(x-x1)+4x1-16]/(y1+y2)

=(4x-16)/(y1+y2)

=4(x-4)/(y1+y2)

当x=4,y=0

==>直线AB经过一个定点(4,0)