凸函数问题,求教.f(x)在(a,b)上市凸函数,求证:对任意X0∈(a,b),f(x)在X0处连续
2个回答

取c,d使a < c < x0 < d < b.

对任意y ∈ (x0,d),对x0 < y < d由凸性有f(y) ≤ (y-x0)/(d-x0)·f(d)+(d-y)/(d-x0)·f(x0).

而对c < x0 < y由凸性有f(x0) ≤ (x0-c)/(y-c)·f(y)+(y-x0)/(y-c)·f(c),

重新整理得(y-c)/(x0-c)·f(x0)-(y-x0)/(x0-c)·f(c) ≤ f(y).

于是(y-c)/(x0-c)·f(x0)-(y-x0)/(x0-c)·f(c) ≤ f(y) ≤ (y-x0)/(d-x0)·f(d)+(d-y)/(d-x0)·f(x0).

当y → x0+时,左右两端 → f(x0),故lim{y → x0+} f(y)存在并等于f(x0),即f(x)在x0右连续.

完全对称的,对任意y ∈ (c,x0),分别对c < y < x0和y < x0 < d由凸性得:

(d-y)/(d-x0)·f(x0)-(x0-y)/(d-x0)·f(d) ≤ f(y) ≤ (y-c)/(x0-c)·f(x0)+(x0-y)/(x0-c)·f(c).

当y → x0-时,左右两端 → f(x0),故lim{y → x0-} f(y)存在并等于f(x0),即f(x)在x0左连续.

于是f(x)在x0处连续.

注:直观上说,凸性保证了过(x0,f(x0))与(y,f(y))的割线斜率关于y是单调增的.

因此对y ∈ (c,d),割线的斜率是有界的(上界(f(d)-f(x0))/(d-x0),下界(f(x0)-f(c))/(x0-c)).

函数在(x0,f(x0))附近的图像夹在一对对顶角区域内(或者说是领结状).

当y趋于x0时,f(y)必然趋近于f(x0).