1直接用洛必达法则得极限为n
2 n+(n^2-n^3)^(1/3) = n + n*(1/n-1)^1/3 = n * [1-(1-1/n)^(1/3)]
利用公式[a^(1/3) - b^(1/3) ] *[a^(2/3) + (ab)^(1/3) + b^(2/3)] = a-b得
1-(1-1/n)^(1/3) = (1-(1-1/n)) / [1+(1-1/n)^(1/3) + (1-1/n)^(2/3)] = 1/n / [1+(1-1/n)^(1/3) + (1-1/n)^(2/3)]
所以n+(n^2-n^3)^(1/3) = n * 1/n / [1+(1-1/n)^(1/3) + (1-1/n)^(2/3)] =1 /[ 1+(1-1/n)^(1/3) + (1-1/n)^(2/3) ]
= 1/(1+1+1) = 1/3