已知定点A(3.0)和定圆C:(x+3)@+y@=100,动圆P过定点A,并且和圆C内切,求动圆P的圆心的轨迹方程
1个回答

定圆C:(x+3)+y=100,圆心坐标为C(-3,0),半径为10 设动圆P的坐标为(x,y),半径为r 动圆P过定点A,|PA|=r 因为动圆P与圆C内切,当动圆P的r较小时,|PC|=10-r |PC|+|PA|=10>|AC|=6 由椭圆的定义可知:点P的轨迹是以(-3,0)(3,0)为焦点,长轴长为10,短轴长为8的双曲线右支 其轨迹方程为x/25+y/16=1 当动圆P的r较大时,|PC|=r-10 |PA|-|PC|=10>|AC|=6 此时不存在轨迹 所以动圆P的圆心的轨迹方程为x/25+y/16=1