已知椭圆x2a2+y2b2=1(a>b>0)和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B.
1个回答

(1)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2,∴b=c,

∴b2=a2-c2=c2,a2=2c2,∴e=

2

2.

(ⅱ)由∠APB=90°及圆的性质,可得|OP|=

2b,∴|OP|2=2b2≤a2

∴a2≤2c2∴e2≥

1

2,

2

2≤e<1.

(2)设P(x0,y0),A(x1,y1),B(x2,y2),

y0-y1

x0-x1=-

x1

y1,整理得x0x+y0y=x12+y12

∵x12+y12=b2

∴PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2.

从而直线AB的方程为:x0x+y0y=b2.

令x=0,得|ON|=|y|=

b2

|y0|,令y=0,得|OM|=|x|=

b2

|x0|,

a2

|ON|2+

b2

|OM|2=

a2

y20+b2

x20

b4=

a2b2

b4=

a2

b2,

a2

|ON|2+

b2

|OM|2为定值,定值是

a2

b2.