(1)(ⅰ)∵圆O过椭圆的焦点,圆O:x2+y2=b2,∴b=c,
∴b2=a2-c2=c2,a2=2c2,∴e=
2
2.
(ⅱ)由∠APB=90°及圆的性质,可得|OP|=
2b,∴|OP|2=2b2≤a2,
∴a2≤2c2∴e2≥
1
2,
2
2≤e<1.
(2)设P(x0,y0),A(x1,y1),B(x2,y2),
则
y0-y1
x0-x1=-
x1
y1,整理得x0x+y0y=x12+y12
∵x12+y12=b2
∴PA方程为:x1x+y1y=b2,PB方程为:x2x+y2y=b2.
从而直线AB的方程为:x0x+y0y=b2.
令x=0,得|ON|=|y|=
b2
|y0|,令y=0,得|OM|=|x|=
b2
|x0|,
∴
a2
|ON|2+
b2
|OM|2=
a2
y20+b2
x20
b4=
a2b2
b4=
a2
b2,
∴
a2
|ON|2+
b2
|OM|2为定值,定值是
a2
b2.