要方程有两不相等的实数根,判别式>0
[-6(3k-1)]²-4×(k²-1)×72>0
整理,得
k²-6k+9>0
(k-3)²>0
k≠3
设方程两根分别为x1,x2,由韦达定理,得
x1+x2=6(3k-1)/(k²-1)>0
解得k>1或-11或k1
又72/(k²-1)为正整数,k²-1只能为2,3,4,6,8,9,12,18,24,36,72
其中,只有k²-1为3,8,24时3k-1为整数.只有k²-1为8时,(3k-1)/(k²-1)=1,为整数.此时k=3,不满足题意.
综上,得k无解.