(1)连接OA,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BDE,
∴∠ODA=∠ADE,
∴∠OAD=∠ADE,
∴OA∥DE,
∴∠OAE+∠AED=180°,
∵DE⊥AE,∴∠E=90°,
∴∠OAE=90°,即AE⊥OA,
∴AE是⊙O的切线;
(2)∵BD是⊙O的直径,
∴∠BCD=∠BAD=90°,
∵∠DBC=30°,
∴∠BDC=60°,
∴∠BDE=120°
∴∠ADB=∠ADE=60°,
∴∠DAE=30°,又∠AED=90°,
∴AD=2DE=2,
在△ABD中,∠BAD=90°,∠ADB=60°,
∴∠ABD=30°,
∴BD=2AD=4.