(2)设直线l是曲线y=f(x)切线,证明直线l与直线x=1和直线y=x所围三角形的面积为定值
1个回答

1.

f(x)'=a-1/(x+b)^2

f(2)'=a-1/(2+b)^2=0

a、b是整数,所以1/(2+b)^2=1,否则不可能满足题意

所以b+2=+-1,b=-1或b=-3

a=1,又f(2)=3,所以3=2+1/(2+b),b=-1

所以f(x)=4x-1/(x-1)

2.设x=t点处的切线为y=f(t)'(x-t)+f(t)

即y=[1-1/(t-1)^2](x-t)+t+1/(t-1)=x-x/(t-1)^2+t/(t-1)^2+1/(t-1)

它与x=1的焦点即将x=1代入有,y=1-1/(t-1)^2+t/(t-1)^2+1/(t-1)=1+(-1+t+t-1)/(t-1)^2=1+(2t-2)/(t-1)^2=1+2/(t-1),交点在(1,1+2/(t-1))

它与y=x的交点即将y=x代入有,x=x-x/(t-1)^2+t/(t-1)^2+1/(t-1)有x=(t-1)^2*[t/(t-1)^2+1/(t-1)]=t+t-1=2t-1,交点在(2t-1,2t-1)

y=x与x=1的交点在(1,1)

所以该三角形的面积S=1/2×|[1+2/(t-1)-1]×[2t-1-1]|=1/2×|2/(t-1) ×2(t-1)|=2