三角形中,根据正弦定理有a/sinA=b/sinB=c/sinC
∴(b+c)/a=(sinB+sinC)/sinA
∵B=π-A-C
∴sinB=sin(A+C)
∴(b+c)/a=[sin(A+C)+sinC]/sinA
∵acosC+根号3(a)sinC=b+c
∴cosC+根号3sinC=[sin(A+C)+sinC]/sinA
∴sinAcosC+根号3sinCsinA=sinAcosC+cosAsinC+sinC
∴根号3sinCsinA=(cosA+1)sinC
∵0<C<π,sinC>0
∴根号3sinA=(cosA+1)
∵sin²A+cos²A=1
∴sinA=1/2根号3,cosA=1/2
∴A=π/3