证明:(1)依题意,有∠DEF=∠A=90°,DA=DE.(2分)
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四边形ADEF是矩形.(4分)
又∵DA=DE,
∴四边形ADEF是正方形.(5分)
(2)由折叠及图形特点易得EG与CB不平行,
连接DG,
∵BG∥CD,且BG=CD,
∴四边形BCDG是平行四边形.
∴CB=DG.
∵四边形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中点,
∴AG=FG.
在△DAG和△EFG中$left{begin{array}{l}DA=EF\∠A=∠EFG\ AG=FGend{array}right.$,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四边形GBCE是等腰梯形.(12分)