n²+1997n=n(n+1997)
设m为n与n+1997的最大公约数,n1=n/m,n2=(n+1997)/m,则n1、n2为正整数且应为完全平方数
设n1=m1²,n2=m2²,m1、m2为正整数,则
n=mm1²
n+1997=mm2²
即mm1²+1997=mm2²
m(m1+m2)(m2-m1)=1997
∵1997为质数,m1+m2>1
∴m=1,m2-m1=1,m1+m2=1997
解得:m1=998,m2=999,则
n=mm1²=1X998²=996004
∴使n^2+1997n是一个完全平方数的最大正整数n的值为996004.