已知正数x,y,z满足x+y+z=xyz.求不等式1/(x+y) + 1/(y+z) + 1/(z+x)的最大值
收藏:
0
点赞数:
0
评论数:
0
1个回答

[1/(x+y)+1/(y+z)+1/(z+x)]^2

≤[1/(x+y)^2+1/(y+z)^2+1/(z+x)^2](1^2+1^2+1^2) (柯西不等式)

≤3(1/4xy+1/4yz+1/4zx) (均值不等式)

=(3/4)(x+y+z)/xyz=3/4.

所以1/(x+y)+1/(y+z)+1/(z+x)≤根号3/2.且x=y=z=根号3时,等号成立.

所以1/(x+y)+1/(y+z)+1/(z+x)的最大值是2分之根号3

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识