高中数学-函数和数列的综合(悬赏+10)
1个回答

先写第一问,太长了,下次再写第二问.而且我怕太长会审核很久,见谅见谅~如果你觉得对的话,然后我再把后续的写上去吧.

(1)由已知得:a1=(2-1)/(2+2)=1/4,fn(0)=-(2an+1)/(an-1)

那么当n=k+1时,

a(k+1)=[f(k+1)(0)-1]/[f(k+1)(0)+2]

=[f1[fk(0)]-1]/[f1[fk(0)]+2]

={2/[1+fk(0)]-1}/{2/[1+fk(0)]+2}

=[1-fk(0)]/[4+2fk(0)]

=[1+(2ak+1)/(ak-1)]/[4-2(2ak+1)/(ak-1)]

=(ak-1+2ak+1)/(4ak-4-4ak-2)

=-1/2*ak

所以{an}是以1/4为首项,-1/2为公比的等比数列

所以an=(-2)^[-(n+1)]

补上第二小题:

第二小题比较复杂,所以很多都简略了,如果有不清楚的地方可以随时追问.

(2)用错位相减法:

T(2n)= 1*1/4+2*(-1/8)+3*1/16+...+(2n-1)*(-2)^(-2n)+2n*(-2)^[-(2n+1)]

-2T(2n)=-1*1/2+2*1/4+3*(-1/8)+...+2n*(-2)^(-2n)

两式相减:

3T(2n)=1/2 -[1/4 -1/8 +1/16+...+(-2)^(-2n)] +2n*(-2)^[-(2n+1)]

3T(2n)=1/2-1/4*{1-(-2)^[-(2n+2)]}/[1-(-2)]+2n*(-2)^[-(2n+1)]

9T(2n)=5/4+(-2)^(-2n)+6n*(-2)^[-(2n+1)]

9T(2n)=5/4+2^(-2n)-6n*2^[-(2n+1)]

9T(2n)=5/4+2^(-2n)-6n*1/2*2^(-2n)

9T(2n)=5/4-(3n-1)*2^(-2n)

9T(2n)=5/4-(3n-1)/2^2n

而Qn=(4n^2+4n+1-3n-1)/(4n^2+4n+1)=1-(3n-1)/(4n^2+4n+1)

相减比较大小:

所以,

9T(2n)-Qn=1/4+(3n-1)[1/(2n+1)^2-1/2^2n),(n∈N+)

现在比较f1(n)=(2n+1)^2和f2(n)=2^2n的大小:

n f1(n) f2(n)

1 9 4

2 25 16

3 49 64

结合f1(n)和f2(n)的单调性,得知当n>=3的时候,f1(n)=3时,1/(2n+1)^2>1/2^2n(倒数后符号变向),那么9T(2n)>Qn

当n=1时,9T(2n)-Qn=1/4+2*(1/9-1/4)=-1/36Qn

综上所述,当n=1的时候,9T(2n)=2的时候,9T(2n)>Qn