数学题(乘法公式的运算)1.已知x-y=a,z-y=10,求代数式x的平方+y的平方+z的平方-xy-yz-zx的最小值
1个回答

因为x-y=a,z-y=10,所以x-z=a-10;

(x-y)平方=x平方-2xy+y平方=a平方;

(z-y)平方=z平方-2zy+y平方=100;

(x-z)平方=x平方-2xz+z平方=(a-10)平方;

以上3式相加得到:

2x平方+2y平方+2z平方-2xy-2yz-2xz=a平方+(a-10)平方+100

两边除以2得到:

x平方+y平方+z平方-xy-yz-xz=a平方-10a+100

等式右边:a平方-10a+100=a平方-10a+25+75=(a-5)平方+75;

所以,当a=5时,原式有最小值75