(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三
收藏:
0
点赞数:
0
评论数:
0
1个回答

解题思路:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,分别求出AE、CE,利用勾股定理求解AC即可.

过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,

则△AFB、△BDC、△AEC都是直角三角形,四边形AA′B′F,BB′C′D和BFED都是矩形,

∴BF=BB′-B′F=BB′-AA′=310-110=200,

CD=CC′-C′D=CC′-BB′=710-310=400,

∵i1=1:2,i2=1:1,

∴AF=2BF=400,BD=CD=400,

又∵EF=BD=400,DE=BF=200,

∴AE=AF+EF=800,CE=CD+DE=600,

∴在Rt△AEC中,AC=

AE2+CE2=

8002+6002=1000(米).

答:钢缆AC的长度是1000米.

点评:

本题考点: 解直角三角形的应用-坡度坡角问题.

考点点评: 本题考查了解直角三角形的应用,解答本题的关键是理解坡度坡角的定义,及勾股定理的表达式,难度一般.

点赞数:
0
评论数:
0
相关问题
关注公众号
一起学习,一起涨知识