由题知,
tanα=1/2
所以,
tan2α
=(2tanα)/(1-tan²α)
=4/3
化简
cos4α/(1+sin4α)
=cos4α/(sin²2α+cos²2α+2sin2α*cos2α)
=(cos²2α-sin²2α)/(sin2α+cos2α)²
=(cos2α-sin2α)(cos2α+sin2α)/(sin2α+cos2α)²
=(cos2α-sin2α)/(cos2α+sin2α)
=(1-tan2α)/(1+tan2α) 【同除以cos2α】
=(1-4/3)/(1+4/3)
=-1/7