2.在锐角△ABC中,若cos²A,cos²B,cos²C的和等于sin²A,s
3个回答

不失一般性地设:(cosA)^2+(cosB)^2+(cosC)^2=(sinC)^2,则:

(cosA)^2+(cosB)^2+2(cosC)^2=1,

∴2(cosA)^2+2(cosB)^2+4(cosC)^2=2,

∴[2(cosA)^2-1]+[2(cosB)^2-1]+2(cosC)^2=-2(cosC)^2,

∴cos2A+cos2B+2(cosC)^2=-2(cosC)^2,

∴2cos(A+B)cos(A-B)+2[cos(A+B)]^2=-2(cosC)^2,

∴2cos(A+B)[cos(A+B)+cos(A-B)]=-2(cosC)^2,

∴-2cosC(2cosAcosB)=-2(cosC)^2,

∴2cosAcosB=cosC,

∴2sinCcosAcosB=sinCcosC,

∴2(sinC/cosC)cosAcosB=sinC,

∴2tanCcosAcosB=sin(A+B),

∴2tanCcosAcosB=sinAcosB+cosAsinB,

∴2tanC=(sinA/cosA)+(sinB/cosB),

∴2tanC=tanA+tanB,

∴tanA、tanC、tanB组成一个等差数列.

同理可证:

(cosA)^2+(cosB)^2+(cosC)^2=(sinA)^2 时,tanB、tanA、tanC成等差数列.

(cosA)^2+(cosB)^2+(cosC)^2=(sinB)^2 时,tanA、tanB、tanC成等差数列.