并用数学归纳法证明?,没必要
1/n*(n+1)=1/n-1/(n+1)
Sn=1-1/2+1/2-1/3+.+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)
n=1,S1=1/2,成立
假设n=k,Sk=1/1*2+1/2*3,...,1/k*(k+1)=k/(k+1)成立
n=k+1时,S(k+1)=Sk+1/(k+1)(k+2)=k/(k+1)+1/(k+1)(k+2)=(k+1)/(k+2),成立
所以Sn=1-1/2+1/2-1/3+.+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)