一个口袋中有大小相同的3个红球和2个白球,从袋中每次至少取一个球,共3次取完,并将3次取到的球分别放入三个不同的箱中,则
1个回答

解题思路:由题意,可将问题转化为将五个小球分为三组放入三个盒子的问题,由于小球的颜色有两种,计数较复杂,可按白球的分组方式分类计数得到正确答案

由题意,本题是一个将五个小球分为三组的问题,着色相同的小球之间无区别

五个小球分三组,只有3、1、1与2、2、1两种方式

若为3、1、1型,二白在一起,一种分法,放入三个不同的箱中有三种方法,二白球不在一起有两种分法,当两球各单独一组时,放入三个箱中有三种放法,两球不全单独时,有A

33=6种放法;

若为2、2、1型,二白在一起,一种分法,放入三个不同的盒子共有A

33=6种放法,二白球不在一起有两种分法,两白球各与一红球在一起时有三种放法,有一个白球单独一组时有有A

33=6种放法

综上,不同的放法种数为3+3+6+6+3+6=27种

故答案为27

点评:

本题考点: 排列、组合及简单计数问题.

考点点评: 本题考查计数问题,正确分类是解题的关键