解题思路:
(n+1)×(n+2)
n×(n+3)
=1+[2/3]×([1/n]-[1/n+3]),把每一项进行拆分,然后通过加减相互抵消,解决问题.
[2×3/1×4]+[5×6/4×7]+[8×9/7×10]+…+[98×99/97×100]
=1+[2/3]×(1-[1/4])+1+[2/3]×([1/4]-[1/7])+1+[2/3]×([1/7]-[1/10])+…+1+[2/3]×([1/97]-[1/100])
=1×33+[2/3]×(1-[1/4]+[1/4]-[1/7]++…+[1/97]-[1/100])
=33+[2/3]×(1-[1/100])
=33+[2/3]×[99/100]
=33+[33/50]
=33[33/50]
点评:
本题考点: 分数的巧算.
考点点评: 此题解答的依据是:(n+1)×(n+2)n×(n+3)=1+[2/3]×([1/n]-[1/n+3]).