用向量法证明三角形ABC的三条中线交于一点P,并且对任意一点O有
1个回答

先假设两条中线AD,BE交与P点

连接CP,取AB中点F连接PF

PA+PC=2PE=BP

PB+PC=2PD=AP

PA+PB=2PF

三式相加

2PA+2PB+2PC=BP+AP+2PF

3PA+3PB+2PC=2PF

6PF+2PC=2PF

PC=-2PF

所以PC,PF共线,PF就是中线

所以ABC的三条中线交于一点P

连接OD,OE,OF

OA+OB=2OF

OC+OB=2OD

OC+OC=2OE

三式相加

OA+OB+OC=OD+OE+OF

OD=OP+PD

OE=OP+PE

OF=OP+PF

OA+OB+OC=3OP+PD+PE+PF=3OP+1/2AP+1/2BP+1/2CP

由第一问结论

2PA+2PB+2PC=BP+AP+CP

2PA+2PB+2PC=0

1/2AP+1/2BP+1/2CP

所以OA+OB+OC=3OP+PD+PE+PF=3OP

向量OP=1/3(向量OA+向量OB+OC向量)