题目是 a = bcosC + csinB 吧
由正弦定理 a/sinA = b/sinB = c/sinC = k
a=ksinA,b=ksinB,c=ksinC
代入约掉k得
sinA = sinBcosC+sinBsinC
而 sinA = sin[π - (B+C)] = sin(B+C) = sinBcosC + cosBsinC
对比两式可得 sinB = cosB
即 tanB=1,B=π/4
由余弦定理
b² = a²+c² - 2accosB
4 = a² + c² - √2 ac ≥ 2ac - √2ac
∴ ac ≤ 4/(2 - √2) = 4 + 2√2
S = 1/2 ac sinB = √2 /4 ac ≤ √2 + 1
∴面积的最大值为 √2 + 1