(1) 解直角三角形
2c=|F1F2|
则 2c*sin60°=2√3
∴ 2c=2√3/(√3/2)=4
(2) 设|F2B|=m,则|AF2|=2m
利用余弦定理
∴ |AF1|²=4m²+16-2*2m*4*cos60°
∴ |AF1|²=4m²+16-8m
∴ |AF1|=2√(m²-2m+4)
∴ |BF1|²=4m²+16-2*2m*4*cos120°
∴ |BF1|²=4m²+16+8m
∴ |BF1|=2√(m²+2m+4)
∴ 2a=|AF1|+|AF2|=|BF1|+|BF2|
∴ 2a=2√(m²-2m+4)+2m=2√(m²+2m+4)+m
解得 m=5/4,2a=6
∴ a=3
∴ b²=a²-c²=5
∴ 椭圆方程是x²/9+y²/5=1