∫(1/tan³x)dx
=∫cot³xdx
=-∫(cotx*(1/(1+tan²x))*(-1/sin²x)dx
=-∫(cotx*(1/(1+tan²x))d(cotx)
令r=cotx,则tanx=1/r
所以原式=-∫(r*(1/(1+1/r²))dr
=-∫(r³/(r²+1))dr
=-∫(r-r/(r²+1))dr=-∫rdr+∫(r/(r²+1))dr
=-0.5r²+0.5∫(1/(r²+1))d(r²+1)
=-0.5r²+0.5ln(r²+1)+c¹
所以原式=-0.5cot²x+0.5ln(cot²x+1)+c¹