(1/tan^3 )的积分
1个回答

∫(1/tan³x)dx

=∫cot³xdx

=-∫(cotx*(1/(1+tan²x))*(-1/sin²x)dx

=-∫(cotx*(1/(1+tan²x))d(cotx)

令r=cotx,则tanx=1/r

所以原式=-∫(r*(1/(1+1/r²))dr

=-∫(r³/(r²+1))dr

=-∫(r-r/(r²+1))dr=-∫rdr+∫(r/(r²+1))dr

=-0.5r²+0.5∫(1/(r²+1))d(r²+1)

=-0.5r²+0.5ln(r²+1)+c¹

所以原式=-0.5cot²x+0.5ln(cot²x+1)+c¹