如图,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,四边形AECF是平行四边形吗?为什么?
1个回答

解题思路:由于AE、CF都垂直于BD,首先可以确定的是AE∥CF;然后再通过证△ABE≌△CDF,来得出AE=CF即可.

答:四边形AECF是平行四边形.

证明:∵AE⊥BD,CF⊥BD,

∴AE∥CF;

∵四边形ABCD是平行四边形,

∴AB=CD,∠ABE=∠CDE;

又∵∠AEB=∠CDF=90°,

∴△ABE≌△CDF;

∴AE=CF;

∴四边形AECF是平行四边形.

点评:

本题考点: 平行四边形的判定与性质;全等三角形的判定与性质.

考点点评: 本题主要考查了平行四边形以及全等三角形的判定和性质.熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.