若a+b+c=0,1a+1+1b+2+1c+3=0,那么(a+1)2+(b+2)2+(c+3)2=______.
3个回答

解题思路:由a+b+c=0得,(a+1)+(b+2)+(c+3)=6,两边平方得(a+1)2+(b+2)2+(c+3)2+2(a+1)(b+2)+2(a+1)(c+3)+2(b+2)(c+3)=36,再由

1

a+1

+

1

b+2

+

1

c+3

=0

去分母,得(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,代入上式即可.

∵a+b+c=0,

∴(a+1)+(b+2)+(c+3)=6,

两边平方得(a+1)2+(b+2)2+(c+3)2+2[(a+1)(b+2)+(a+1)(c+3)+(b+2)(c+3)]=36,

又由

1

a+1+

1

b+2+

1

c+3=0去分母,得

(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0,

∴(a+1)2+(b+2)2+(c+3)2=36.

故答案为:36.

点评:

本题考点: 分式的混合运算.

考点点评: 本题考查了分式的混合运算.关键是将已知等式变形,得出与所求结果相同的结构,采用两边平方的方法求解.