f(x)=2/3+1/x
an=2/3+a(n-1)
所以 an-a(n-1)=2/3
所以 {an}是等差数列
首项a1=1,d=2/3
所以 an=1+2(n-1)/3=(2n+1)/3
(1)n是偶数
Sn=(a1a2-a2a3)+(a3a4-a4a5)+.+[a(n-1)an-ana(n+1)]
= -a2(a3-a1)-a4(a3+a5)+.-a(n)[a(n+1)-a(n-1)]
=-4/3*(a2+a4+.+an)
=-(4/3) *[5/3+(2n+1)/3]*n/4
=(-4/3)*n(n+3)/6
=-2n(n+3)/9
(2)n是奇数
Sn=S(n-1)+an*a(n+1)
=-2(n-1)(n+2)/9+(2n+1)(2n+3)/9