(1) 若c = 8√3,∠C=90°,∠A=30°
由正弦定理 a/sinA = c/sinC得,a = c*sinA/sinC = 8√3sin30°/sin90° = 4√3
由勾股定理:b^2 = √(c^2 - a^2 ) = √[ (8√3)^2 - (4√3)^2 ] = 12
B = 180°-∠A - ∠B = 180°-30°-90°= 60°
(2) 若a = 3 ,b = 3√3,则由勾股定理有
c = √(a^2 + b^2) = √( 3^2 + (3√3)^2] = 6
由正弦定理有:a/sinA = c/sinC得
sinA = asinC/c = 3*sin90°/6 = 1/2 ,由于∠A< ∠C,a < c,故三角形有唯一解
所以 A =30°
因此 ∠B = 180°-∠A - ∠C = 180°-30°-90°=60°
(3) 若tanA=√3,则 A =60°
则 B= 180°-A -C = 180°-60°-90° =30°
由正弦定理a/sinA=b/sinB得,a = b*sinA/sinB = 2sin60°/sin30°=2√3
由勾股定理得c=√(a^2 + b^2) = √[ 2^2 + (2√3)^2] = 4