由题意易得1≤(2x^2+bx+c)/(x^2+c)≤3
令f(x)=(2x^2+bx+c)/(x^2+c),于是问题转化为求此函数的值域问题
f(x)=2+(bx-c)/(x^2+c),对f(x)求导
有f'(x)=[b(x^2+c)-(bx-c)2x]/(x^2+c)^2=(-bx^2+2cx+bc)/(x^2+c)^2
令f'(x)=0,得到两根x1,x2(你自己解吧,我身边没稿纸,计算不方便)
当b>0时,f(x)在(-∞,x1)单调减,在(x1,x2)单调增,在(x2,+∞)单调减,所以f(x1)=1,f(x2)=3(函数在正负无穷大处极限为2,都不是最值)
当