(1)
已知准线方程为x=1/4,则-p/2=1/4
所以,p=-1/2
所以,抛物线方程为y^2=2px=-x
(2)
设过点(-1,0)的直线为y=k(x+1)
联立直线与抛物线方程得到:y=k(-y^2+1)
===> ky^2+y-k=0
===> y1*y2=-1
所以,x1*x2=(-y1^2)*(-y2^2)=(y1y2)^2=1
而,Koa=y1/x1,Kob=y2/x2
所以,Koa*Kob=(y1y2)/(x1x2)=-1
所以,OA⊥OB
(3)
联立直线与抛物线方程有:[k(x+1)]^2=-x
===> k^2*x^2+(2k^2+1)x+k^2=0
===> x1+x2=-(2k^2+1)/k^2,x1x2=1
所以,(x1-x2)^2=(x1+x2)^2-4x1x2=[(2k^2+1)^2/k^4]-4
=[(4k^4+4k^2+1)/k^4]-4
=(4k^2+1)/k^4
(y1-y2)^2=y1^2-2y1y2+y2^2=-x1+2-x2=-(x1+x2)+2=[(2k^2+1)/k^2]+2
=(4k^2+1)/k^2
所以,AB=√[(x1-x2)^2+(y1-y2)^2]=√[(4k^2+1)/k^4+(4k^2+1)/k^2]
=√[(4k^4+5k^2+1)/k^4]
又,原点0(0,0)到直线的距离为d=|k|/√(k^2+1)
所以,S△OAB=(1/2)AB*d
=(1/2)*√[(k^2+1)(4k^2+1)]/k^2*|k|/√(k^2+1)=√2
===> √(4k^2+1)=2√2|k|
===> 4k^2+1=8k^2
===> 4k^2=1
===> k=±1/2
所以,直线方程为:y=±(1/2)(x+1)