已知抛物线的顶点在原点,准线方程为x=1/4,该抛物线与过点(-1,0)的直线交于A,B.(1)求抛物线方程.(2)求证
2个回答

(1)

已知准线方程为x=1/4,则-p/2=1/4

所以,p=-1/2

所以,抛物线方程为y^2=2px=-x

(2)

设过点(-1,0)的直线为y=k(x+1)

联立直线与抛物线方程得到:y=k(-y^2+1)

===> ky^2+y-k=0

===> y1*y2=-1

所以,x1*x2=(-y1^2)*(-y2^2)=(y1y2)^2=1

而,Koa=y1/x1,Kob=y2/x2

所以,Koa*Kob=(y1y2)/(x1x2)=-1

所以,OA⊥OB

(3)

联立直线与抛物线方程有:[k(x+1)]^2=-x

===> k^2*x^2+(2k^2+1)x+k^2=0

===> x1+x2=-(2k^2+1)/k^2,x1x2=1

所以,(x1-x2)^2=(x1+x2)^2-4x1x2=[(2k^2+1)^2/k^4]-4

=[(4k^4+4k^2+1)/k^4]-4

=(4k^2+1)/k^4

(y1-y2)^2=y1^2-2y1y2+y2^2=-x1+2-x2=-(x1+x2)+2=[(2k^2+1)/k^2]+2

=(4k^2+1)/k^2

所以,AB=√[(x1-x2)^2+(y1-y2)^2]=√[(4k^2+1)/k^4+(4k^2+1)/k^2]

=√[(4k^4+5k^2+1)/k^4]

又,原点0(0,0)到直线的距离为d=|k|/√(k^2+1)

所以,S△OAB=(1/2)AB*d

=(1/2)*√[(k^2+1)(4k^2+1)]/k^2*|k|/√(k^2+1)=√2

===> √(4k^2+1)=2√2|k|

===> 4k^2+1=8k^2

===> 4k^2=1

===> k=±1/2

所以,直线方程为:y=±(1/2)(x+1)