a<x1<x2
f(x1)-f(x2)=Loga[(1-a/x1)/(1-a/x2)]=Loga[(x1x2-ax2)/(x1x2-ax1)]
∵a<x1<x2
∴(x1x2-ax2)<(x1x2-ax1)
即(x1x2-ax2)/(x1x2-ax1)<1
x1x2-ax2=x2(x1-a)>0
x1x2-ax1=x1(x2-a)>0
00又0
所以f(x1)-f(x2)=Loga[(1-a/x1)/(1-a/x2)]=Loga[(x1x2-ax2)/(x1x2-ax1)]<0
f(x)是减函数