以2x±3y=0为渐近线,且过点(1,2)的双曲线方程为 ___ .
1个回答

解题思路:由题意,设双曲线的方程为4x2-9y2=λ(λ≠0),代入已知点的坐标解出λ的值,即可求得该双曲线的方程.

根据双曲线的渐近线方程为2x±3y=0,

设双曲线的方程为(2x+3y)(2x-3y)=λ(λ≠0),即4x2-9y2=λ(λ≠0),

∵点(1,2)在双曲线上,∴4×12-9×22=λ,解得λ=-32.

由此可得双曲线的方程为4x2-9y2=-32,化简得

y2

32

9-

x2

8=1.

故答案为:

y2

32

9-

x2

8=1

点评:

本题考点: 双曲线的标准方程.

考点点评: 本题给出双曲线经过定点,在已知渐近线方程的情况下求双曲线的方程.着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.