有四条线段,a=14,b=13,c=9,d=7,用a、c分别作一个梯形的下、上两底,用b、d分别作这个梯形的两腰(作出的
2个回答

解题思路:可以假设这个梯形是存在的,过梯形的上底的顶点作腰的平行线,则a-c,b,d构成三角形,若这条线段满足三角形的三边关系定理,则这个梯形就是存在的.

∵a-c=14-9=5.

(a-c)+d<b

∴以b,d,a-c为边的三角形不存在.

∴这个梯形不存在.

故选D.

点评:

本题考点: 梯形.

考点点评: 本题主要考查了梯形的边的关系,正确转化为三角形的三边关系判断是解决本题的关键.