A、B为抛物线Y^2=2PX上的点,角AOB=90度,则A、B必在X轴两侧
令A:(m,-√(2pm)),B((n,√(2pn)),其中m,n>0
角AOB=90度即kOA*kOB=-1
-√(2pm)/m * √(2pn)/n = -1
2p√(mn) = mn
√mn = 2p
A:(m,-√(2pm)),B((n,√(2pn))所在直线方程:
[y+√(2pm)]/(x-m) = [y-√(2pn)]/(x-n)
xy - √(2pn) x - my + m√(2pn)= xy +√(2pm) x - ny -n(√2pm)
x+ (m-n)y - [ m√(2pn)+n(√2pm)] = 0
当y=0时,x=[ m√(2pn)+n(√2pm)] /[√(2pm)+√(2pn) ] = (m√n+n√m)/(√m+√n) = √mn = 2p
∴AB恒过(2p,0)