如图所示①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O 是AC边上一点,连结BO交AD于点F,OE⊥OB
1个回答

(1)证明:∵AD⊥BC,∴∠DAC+∠C=90°,

∵∠BAC=90°,∴∠BAF=∠C,

∵OE⊥0B,∴∠BOA+∠COE=90°,

∵∠BOA+∠ABF=90°,∴∠ABF=∠COE,

∴△ABF∽△COE;

(2)作CG⊥AC,交AD的延长线于G,

∵AC=2AB,

O是AC边的中点,∵AB=OC= OA,

由(1)有△ABF∽△COE,

∴△ABF≌△COE,∴BF=OE,

∵∠BAD十∠DAC=90°,∠DAB +∠ABD=90°,

∴∠DAC=∠ABD,

又∠BAC=∠AOG=90°,AB=OA,

∴△ABC≌△OAG

∵OG=AC=2AB,

∵OG⊥OA,

∴AB∥CG,

∴△ABF∽△GOF,

(3)