如图所示,BC是⊙O的直径,P为⊙O外的一点,PA、PB为⊙O的切线,切点分别为A、B.试证明:AC∥OP.
1个回答

解题思路:连接AB交PO于F,根据切线的性质得到PO垂直平分AB,再根据直径所对的圆周角是直角可得∠CAB=90°,于是∠CAB=∠OFB,所以AC∥OP.

证明:连接AB交OP于F,连接AO.

∵PA,PB是圆的切线,

∴PA=PB,

∵OA=OB

∴PO垂直平分AB.

∴∠OFB=90°.

∵BC是直径,

∴∠CAB=90°.

∴∠CAB=∠OFB.

∴AC∥OP.

点评:

本题考点: 切线的性质.

考点点评: 本题考查了切线的性质、圆周角定理在圆中:直径所对的圆周角是直角.