数列an=n^2 求和
1个回答

an = n²

Sn = 1² + 2² + 3² + .+ n² = n(n+1)(2n+1)/6

归纳法证明:

n = 1,1×(1+1)×(2×1+1)/6 = 6/6 = 1,求和公式正确

设 n = k 时,Sk = 1² + 2² + 3² + .+ k² = k(k+1)(2k+1)/6 成立.

S(k+1) = k(k+1)(2k+1)/6+(k+1)²

= (k+1)[k(2k+1)/6+(k+1)]

= (k+1)[k(2k+1)+6k+6]/6

= (k+1)[2k²+7k+6]/6

= (k+1)[(k+2)(2k+3]/6

= (k+1)[(k+1)+1][2(k+1)+1]/6

得证.