如图,在△MNP中,∠MNP=45°,H是高MQ和高NR的交点,求证:HN=PM.
2个回答

解题思路:根据三角形的内角和定理求出∠1=∠2,求出∠QMN=∠MNQ,推出QM=QN,证Rt△HQN和Rt△PQM,即可推出答案.

如图1∵MQ⊥PN,∠MNP=45°,

∴∠QMN=45°=∠QNM,

∴QM=QN,

∵NR⊥PM,

∴∠1+∠4=90°,

又∵∠2+∠3=90°,∠3=∠4,

∴∠1=∠2,

在△HQN和△PQM中,

∠1=∠2

QM=QN

∠MQP=∠NQH,

∴△HQN≌△PQM(ASA),

∴HN=PM.

点评:

本题考点: 全等三角形的判定与性质.

考点点评: 本题考查了全等三角形的性质和判定,三角形的内角和定理,等腰三角形的判定等知识点,关键是推出△HQN≌△PQM,题目比较典型,是一道比较好的题目.