解题思路:(1)根据一元一次方程及根的条件,求k的值.
(2)把交点坐标代入二次函数的解析式求出值.
(3)根据根的判别式和一元一次方程的根为正实数得出x有两不相等的实数根.
(1)由kx=x+2,
得(k-1)x=2.
依题意k-1≠0.
∴x=
2
k−1.
∵方程的根为正整数,k为整数,
∴k-1=1或k-1=2.
∴k1=2,k2=3.
(2)依题意,二次函数y=ax2-bx+kc的图象经过点(1,0),
∴0=a-b+kc,
kc=b-a,
∵已知akc≠0,
∴b-a≠0,
∴
(kc)2−b2+ab
akc=
(b−a)2−b2+ab
a(b−a)=
b2−2ab+a2−b2+ab
ab−a2=
a2−ab
ab−a2=−1,
(3)证明:方程②的判别式为△=(-b)2-4ac=b2-4ac.
由a≠0,c≠0,得ac≠0.
(i)若ac<0,则-4ac>0.故△=b2-4ac>0.
此时方程②有两个不相等的实数根.
(ii)证法一:若ac>0,由(2)知a-b+kc=0,
故b=a+kc.
△=b2-4ac=(a+kc)2-4ac
=a2+2kac+(kc)2-4ac
=a2-2kac+(kc)2+4kac-4ac
=(a-kc)2+4ac(k-1)
∵方程kx=x+2的根为正实数,
∴方程(k-1)x=2的根为正实数.
由x>0,2>0,得k-1>0.
∴4ac(k-1)>0.
∵(a-kc)2≥0,
∴△=(a-kc)2+4ac(k-1)>0.
此时方程②有两个不相等的实数根.
证法二:若ac>0,
∵抛物线y=ax2-bx+kc与x轴有交点,
∴△1=(-b)2-4akc=b2-4akc≥0.
(b2-4ac)-(b2-4akc)=4ac(k-1).
由证法一知k-1>0,
∴b2-4ac>b2-4akc≥0.
∴△=b2-4ac>0.此时方程②有两个不相等的实数根.
综上,方程②有两个不相等的实数根.
点评:
本题考点: 抛物线与x轴的交点;一元一次方程的解;根的判别式.
考点点评: 考查根的判别式与根的关系和二次函数图象性质.