在△ABC中,设BC=a,AB=c,CA=b,若(b+a)/a=sinB/(sinB-sinA),cos2C+cosC=
收藏:
0
点赞数:
0
评论数:
0
2个回答

直角三角形

因为a/sinA=b/sinB=c/sinC

所以

(b+a)/a=sinB/(sinB-sinA)

1+b/a=sinB/(sinB-sinA)

1+sinB/sinA=sinB/(sinB-sinA)

(sinA+sinB)/sinA=sinB/(sinB-sinA)

sinAsinB=(sinB)^2-(sinA)^2.(1)

cos2C+cosC=1-cos(A-B)

cos2C=1+cos(A+B)-cos(A-B)

cos2C=1-2sinAsinB

因为(1)

所以cos2C=1-2(sinB)^2+2(sinA)^2

2(cosC)^2-1=1-2(sinB)^2+2(sinA)^2

(cosC)^2=1-(sinB)^2+(sinA)^2

1-(sinC)^2=1-(sinB)^2+(sinA)^2

(sinB)^2=(sinC)^2+(sinA)^2 .(2)

又由a/sinA=b/sinB=c/sinC得a^2/(sinA)^2=b^2/(sinB)^2=c^2/(sinC)^2

b^2/(sinB)^2=(a^2+c^2)/[(sinA)^2+(sinC)^2]

因为(2)所以b^2=a^2+c^2

所以是直角三角形

点赞数:
0
评论数:
0
关注公众号
一起学习,一起涨知识